All-trans retinoic acid modulates cancer stem cells of glioblastoma multiforme in an MAPK-dependent manner.
نویسندگان
چکیده
Glioblastoma multiforme (GBM), a grade IV glioma, appears to harbor therapy-resistant cancer stem cells (CSCs) that are the major cause of recurrence. All-trans retinoic acid (ATRA), a derivative of retinoid, is capable of differentiating a variety of stem cells, as well as normal neural progenitor cells, and down-regulates expression of the stem cell marker nestin. This study investigated the effects of ATRA on differentiation, proliferation, self-renewal, and signaling pathways of CSCs in GBM. CSCs differentiated into glial and neuronal lineages at low concentrations of ATRA (10 μM). Proliferation and self renewal of neurospheres were reduced following ATRA, although ATRA induced apopotsis at higher (40 μM) concentrations. Analysis of mitogen-activated protein kinase signaling pathways, specifically extracellular signal-regulated kinases (ERK1/2), showed that ATRA-induced alterations in ERK1/2 were associated with regulation of differentiation, proliferation and apoptosis. These results emphasize that low doses of ATRA may have therapeutic potential by differentiating GBM CSCs and rendering them sensitive to targeted therapy.
منابع مشابه
All-trans retinoic acid impairs the vasculogenic mimicry formation ability of U87 stem-like cells through promoting differentiation
The poor therapeutic effect of traditional antiangiogenic therapy on glioblastoma multiforme (GBM) may be attributed to vasculogenic mimicry (VM), which was previously reported to be promoted by cancer stem-like cells (SLCs). All-trans retinoic acid (ATRA), a potent reagent which drives differentiation, was reported to be able to eradicate cancer SLCs in certain malignancies. The aim of the pre...
متن کاملتاثیر غلظتهای مختلف ال- ترانس رتینوئیک اسید بر رشد و بقای سلولهای بنیادی فولیکول موی موش سوری
Background and Objective: Hair follicle stem cells are multipotent, located in the bulge area, and are highly proliferating. Retinoids have an effect on epidermal differentiation and keratinization. Retinoic acid is used to treat some skin diseases such as Melasma, Acne and Ichthyosis. So, the study of all-trans retinoic acid effect on hair follicle stem cells and determination of the effective...
متن کاملEvaluation of Neurogenic Potential of Human Umbilical Cord Mesenchymal Cells a Time- and Concentration- Dependent Manner
Background: Retinoic acid as one of the most important regulators for cell differentiation was examined in this study for differentiation of human umbilical mesenchymal cells (hUCM). Methods: After isolation, hUCM were evaluated for mesenchymal stem cell properties by flow cytometry and alkaline phosphatase assay. Also, doubling time of the cells and their differentiation potential into adipoge...
متن کاملTargeting cancer stem cells in glioblastoma multiforme using mTOR inhibitors and the differentiating agent all-trans retinoic acid.
Glioblastoma multiforme (GBM), the most aggressive primary brain tumor, portends a poor prognosis despite current treatment modalities. Recurrence of tumor growth is attributed to the presence of treatment-resistant cancer stem cells (CSCs). The targeting of these CSCs is therefore essential in the treatment of this disease. Mechanistic target of rapamycin (mTOR) forms two multiprotein complexe...
متن کاملO27: Interaction of Cancer Stem Cells and Microglia in Glioblastoma Multiforme
Malignant gliomas are highly invasive brain tumors with the occurrence of multiple microglia/macrophages in the tumor microenvironment. Macrophages/microglia that found in glioma microenvironment, as tumor-infiltrating immune cells, can play a harmful role in tumor progression. In addition, glioblastoma multiforme (GBM) contains multiple aberrant differentiation and tumorigenic cancer stem cell...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Anticancer research
دوره 30 12 شماره
صفحات -
تاریخ انتشار 2010